

EYFS and KS1 Calculation Policy

March 2020

End of Year Expectations EYFS to Year 2

EYFS Year $1 \quad$ Year 2

- count reliably with numbers from one to 20.
- place numbers in order.
- say which number is one more or one less than a given number.
- using quantities and objects, they add two single-digit numbers and count on to find the answer.
- using quantities and objects, they subtract two single-digit numbers and back to find the answer.
- solve problems, including doubling, halving and sharing.
- read, write and interpret mathematical statements involving addition (+), subtraction (-) and equals (=) signs
- represent and use number bonds and related subtraction facts within 20
- add and subtract one-digit and twodigit numbers to 20 , including zero
- solve one-step problems that involve addition and subtraction, using concrete objects and pictorial representations, and missing number problems such as $7=?-9$.
- solve one-step problems involving multiplication and division, by calculating the answer using concrete objects
- solve one-step problems involving multiplication and division using pictorial representations and arrays with the support of the teacher
- solve problems with addition and subtraction:
- using concrete objects and pictorial representations, including those involving numbers, quantities and measures
- applying their increasing knowledge of mental and written methods
- recall and use addition and subtraction facts to 20 fluently
- derive and use related facts up to 100
- add and subtract numbers using concrete objects, pictorial representations, and mentally, including:
- a two-digit number and ones
- a two-digit number and tens
- two two-digit numbers
- adding three one-digit numbers
- show that addition of two numbers can be done in any order (commutative) and subtraction of one number from another cannot
- recognise and use the inverse relationship between addition and subtraction and use this to check calculations and solve missing number problems
- recall and use multiplication and division facts for the 2 , 5 and 10 multiplication tables, including recognising odd and even numbers
- calculate mathematical statements for multiplication and division within the multiplication tables and write them using the multiplication (\times), division (\div) and equals (=) signs
- show that multiplication of two numbers can be done in any order (commutative) and division of one number by another cannot

Maths - calculation policy

| | |
| :--- | :--- | :--- |

- solve problems involving multiplication and division, using materials, arrays, repeated addition, mental methods, and multiplication and division facts, including problems in contexts

KEY STAGE 1

Children develop the core ideas that underpin all calculation. They begin by connecting calculation with counting on and counting back, but they should learn that understanding wholes and parts will enable them to calculate efficiently and accurately, and with greater flexibility. They learn how to use an understanding of 10 s and 1 s to develop their calculation strategies, especially in addition and subtraction.

Key language: whole, part, ones, ten, tens, number bond, add, addition, plus, total, altogether, subtract, subtraction, find the difference, take away, minus, less, more, group, share, equal, equals, is equal to, groups, equal groups, times, multiply, multiplied by, divide, share, shared equally, times-table

Addition and subtraction: Children first learn to connect addition and subtraction with counting, but they soon develop two very important skills: an understanding of parts and wholes, and an understanding of unitising 10s, to develop efficient and effective calculation strategies based on known number bonds and an increasing awareness of place value. Addition and subtraction are taught in a way that is interlinked to highlight the link between the two operations. A key idea is that children will select methods and approaches based on their number sense. For example, in Year 1, when faced with $15-3$ and $15-13$, they will adapt their ways of approaching the calculation appropriately. The teaching should always emphasise the importance of mathematical thinking to ensure accuracy and flexibility of approach, and the importance of using known number facts to harness their recall of bonds within 20 to support both addition and subtraction methods.
In Year 2, they will start to see calculations presented in a column format, although this is not expected to be formalised until KS2.

Multiplication and division: Children develop an

 awareness of equal groups and link this with counting in equal steps, starting with $2 \mathrm{~s}, 5 \mathrm{~s}$ and 10 s . In Year 2, they learn to connect the language of equal groups with the mathematical symbols for multiplication and division.They learn how multiplication and division can be related to repeated addition and repeated subtraction to find the answer to the calculation.
In this key stage, it is vital that children explore and experience a variety of strong images and manipulative representations of equal groups, including concrete experiences as well as abstract calculations. Children begin to recall some key multiplication facts, including doubles, and an understanding of the 2, 5 and 10 times-tables and how they are related to counting.

Fractions: In Year 1, children encounter halves and quarters, and link this with their understanding of sharing. They experience key spatial representations of these fractions, and learn to recognise examples and non-examples, based on their awareness of equal parts of a whole.
In Year 2, they develop an awareness of unit fractions and experience non-unit fractions, and they learn to write them and read them in the common format of numerator and denominator.

EYFS Addition

Models and Strategies
Recognise numbers 1-20 using a range of activities (e.g. flash cards, board games, Numicon ordering cards). Adding by combining sets of objects.
Adding by combining sets of objects. Concepts are taught in the context of real life using concrete apparatus and pictorial representations Children will progress from combining two sets of objects and counting them all (aggregation) to counting Chilaren will progress from combining two
on from the largest number (augmentation). \square

ω_{3}^{3} \square

Use of Numicon to identify one more than a given number and to begin to add without counting.

8 is one more than 7
Count on 1 from 7
Adding by counting forward from the first number.
On a bead string:

On a number track

 Count on 2 from 11
" 7 add 3 is 10 ."
Number lines can then be used alongside number tracks and concrete apparatus:

Number bonds to 10.
Using Numicon

$8+2=10$
$10-2=8$
Doubling.

$$
00 \text { Double } 2 \text { is } 4
$$

Vocabulary of addition.

Through a variety of activities (e.g. role play, songs, rhymes) promote the language associated with addition: add, more, total, altogether, sum, plus, make, count on.

Recording.

Pupils make a record in pictures, words, symbols or marks they can interpret of the addition activities that have been carried out. Begin to record addition calculations using + and $=$ signs.

EYFS Subtraction

Introduce number tracks alongside concrete apparatus to count back and to find one less.

Number lines can then be used alongside number tracks and concrete apparatus.

Use of Numicon to find the difference between two numbers.

$$
\text { The difference between } 8 \text { and } 6 \text { is } 2
$$

$$
8+2=10
$$

$$
10-2=8
$$

Vocabulary of subtraction.

Through a variety of activities promote the language of subtraction: take away, one less, two less etc, count back, difference, subtract.

- Singing '10 green bottles', '10 currant buns' etc
- Playing counting backwards games such as 'Rockets'
- Quality texts such as 'Handa's Surprise'.
- Role play / real-life experiences
E.g. How many more children are hoving school dinners today? If we wanted to calculate the difference between school dinners and packed lunches, how would we do this? How many more children chose bananas than apples today?

Recording.

Recording: Pupils make a record in pictures, words or symbols of the subtraction activities that have been carried out. Pupils make a record in pictures, words or symbols of the subur
Begin to record subtraction calculations using - and $=$ signs.

EYFS Multiplication

Understand doubling as adding the same number.

E.g. songs with actions - 'Mr Double -Trouble'; doubling machine games; finding doubles in dominoes.

Recording.

- Record calculations in pictures - Numicon pieces can be drawn around.

EYFS Division

Models and Strategies

Children will solve problems in a practical way in the context of real life. They need to see and hear representations of division as sharing and grouping. Pictorial representations are used alongside concrete apparatus.

Solve real-life problems using the sharing and grouping models of division.

Sharing.

Share real objects (e.g. fruit) equally between a number of children, teddy bears etc. The objects are shared, one per set, until the total is exhausted.
E.g. Eight strawberries are shared equally between 4 children. How many strawberries will each child have?

Grouping.

Repeatedly subtract equal groups of objects until the total is exhausted.
E.g. I have six socks and I group them into pairs. How many pairs do I have?

I have three groups of two socks.
I have three pairs of socks.

I have 15 apples. If I put 5 apples into each bag, how many bags can I fill?

Year 1			
	Concrete	Pictorial	Abstract
Year 1 Addition	Counting and adding more Children add one more person or object to a group to find one more.	Counting and adding more Children add one more cube or counter to a group to represent one more. One more than 4 is 5 .	Counting and adding more Use a number line to understand how to link counting on with finding one more. One more than 6 is 7. 7 is one more than 6 . Learn to link counting on with adding more than one. $5+3=8$
	Understanding part-part-whole relationship Sort people and objects into parts and understand the relationship with the whole. The parts are 2 and 4. The whole is 6 .	Understanding part-part-whole relationship Children draw to represent the parts and understand the relationship with the whole. The parts are 1 and 5 . The whole is 6 .	Understanding part-part-whole relationship Use a part-whole model to represent the numbers. $\begin{aligned} & 6+4=10 \\ & 6+4=10 \end{aligned}$

Knowing and finding number bonds within 10
Break apart a group and put back together to
find and form number bonds.

	Adding by counting on Children use knowledge of counting to 20 to find a total by counting on using people or objects.	Adding by counting on Children use counters to support and represent their counting on strategy.	Adding by counting on Children use number lines or number tracks to support their counting on strategy. $7+5=$ \square
	Adding the 1 s Children use bead strings to recognise how to add the 1 s to find the total efficiently. $\begin{aligned} & 2+3=5 \\ & 12+3=15 \end{aligned}$	Adding the 1 s Children represent calculations using ten frames to add a teen and 1 s . $\begin{aligned} & 2+3=5 \\ & 12+3=15 \end{aligned}$	Adding the 1s Children recognise that a teen is made from a 10 and some 1 s and use their knowledge of addition within 10 to work efficiently. $\begin{aligned} & 3+5=8 \\ & \text { So, } 13+5=18 \end{aligned}$
	Bridging the 10 using number bonds Children use a bead string to complete a 10 and understand how this relates to the addition. 7 add 3 makes 10. So, 7 add 5 is 10 and 2 more.	Bridging the 10 using number bonds Children use counters to complete a ten frame and understand how they can add using knowledge of number bonds to 10 .	Bridging the 10 using number bonds Use a part-whole model and a number line to support the calculation. $9+4=13$

| Year 1 |
| :--- | :--- | :--- |
| Subtraction |\quad| Counting back and taking away |
| :--- |
| Children arrange objects and remove to find |
| how many are left. |

			So, $19-14=5$
	Subtraction bridging 10 using number bonds For example: 12-7 Arrange objects into a 10 and some 1s, then decide on how to split the 7 into parts. 7 is 2 and 5 , so I take away the 2 and then the 5 .	Subtraction bridging 10 using number bonds Represent the use of bonds using ten frames. For 13 -5, I take away 3 to make 10, then take away 2 to make 8.	Subtraction bridging 10 using number bonds Use a number line and a part-whole model to support the method.
Year 1 Multiplication	Recognising and making equal groups Children arrange objects in equal and unequal groups and understand how to recognise whether they are equal. A B C	Recognising and making equal groups Children draw and represent equal and unequal groups.	Describe equal groups using words Three equal groups of 4 . Four equal groups of 3 .
	Finding the total of equal groups by counting in $2 s, 5 s$ and $10 s$ There are 5 pens in each pack ... 5...10...15...20...25...30...35...40...	Finding the total of equal groups by counting in $2 \mathrm{~s}, 5 \mathrm{~s}$ and 10 s 100 squares and ten frames support counting in $2 \mathrm{~s}, 5 \mathrm{~s}$ and 10 s .	Finding the total of equal groups by counting in $2 s, 5 s$ and $10 s$ Use a number line to support repeated addition through counting in $2 \mathrm{~s}, 5 \mathrm{~s}$ and 10 s .

Maths - calculation policy

Year 1 Division	Grouping Learn to make equal groups from a whole and find how many equal groups of a certain size can be made. Sort a whole set people and objects into equal groups. There are 10 children altogether. There are 2 in each group. There are 5 groups.	Grouping Represent a whole and work out how many equal groups. There are 10 in total. There are 5 in each group. There are 2 groups.	Grouping Children may relate this to counting back in steps of 2,5 or 10 .
	Sharing Share a set of objects into equal parts and work out how many are in each part.	Sharing Sketch or draw to represent sharing into equal parts. This may be related to fractions.	Sharing 10 shared into 2 equal groups gives 5 in each group.

Year 2			
	Concrete	Pictorial	Abstract
Year 2 Addition			
Understanding 10s and 1s	Group objects into 10s and 1s． Bundle straws to understand unitising of 10s．	Understand 10s and 1s equipment，and link with visual representations on ten frames．	Represent numbers on a place value grid，using equipment or numerals．
Adding 10s	Use known bonds and unitising to add 10s． （III） I know that $4+3=7$ ． So，I know that 4 tens add 3 tens is 7 tens．	Use known bonds and unitising to add 10s． I know that $4+3=7$ ． So，I know that 4 tens add 3 tens is 7 tens．	Use known bonds and unitising to add 10s． $\begin{aligned} & 4+3=\square \\ & 4+3=7 \\ & 4 \text { tens }+3 \text { tens }=7 \text { tens } \\ & 40+30=70 \end{aligned}$
Adding a 1－digit number to	Add the 1 s to find the total．Use known bonds within 10.	Add the 1s．	Add the 1s．

Maths - calculation policy

Maths - calculation policy

Adding a multiple of 10 to a 2-digit number	Add the 10 s and then recombine. 27 is 2 tens and 7 ones. 50 is 5 tens. There are 7 tens in total and 7 ones. So, $27+50$ is 7 tens and 7 ones.	Add the 10 s and then recombine. 66 is 6 tens and 6 ones. $66+10=76$ A 100 square can support this understanding.	Add the 10 s and then recombine. $\begin{aligned} & 37+20=? \\ & 30+20=50 \\ & 50+7=57 \end{aligned}$ $37+20=57$
Adding a multiple of 10 to a 2-digit number using columns	Add the 10 s using a place value grid to support.	Add the 10 s using a place value grid to support.	Add the 10s represented vertically. Children must understand how the method relates to unitising of 10 s and place value.

	T O 10 $0 e d$ 10 0 10 10 10 10 16 is 1 ten and 6 ones. 30 is 3 tens. There are 4 tens and 6 ones in total.	 16 is 1 ten and 6 ones. 30 is 3 tens. There are 4 tens and 6 ones in total.	T O I 6 3 0 4 6$\begin{aligned} & 1+3=4 \\ & 1 \text { ten }+3 \text { tens }=4 \text { tens } \\ & 16+30=46 \end{aligned}$
Adding two 2-digit numbers	Add the 10 s and 1 s separately. $5+3=8$ There are 8 ones in total. $3+2=5$ There are 5 tens in total. $35+23=58$	Add the 10s and 1s separately. Use a part-whole model to support. $\begin{aligned} & 11=10+1 \\ & 32+10=42 \\ & 42+1=43 \end{aligned}$ $32+11=43$	Add the 10s and the 1s separately, bridging 10s where required. A number line can support the calculations.
Adding two 2-digit numbers using a place value grid	Add the 1s. Then add the 10s.		Add the 1s. Then add the 10s.

Maths - calculation policy

			$\begin{array}{r} \mathrm{T} O \\ \hline 3 \\ +16 \\ +4 \\ \hline \end{array}$ $\begin{array}{r\|l} \mathrm{T} & 0 \\ \hline 3 & 2 \\ 1 & 4 \\ \hline 4 & 6 \\ \hline \end{array}$
Adding two 2-digit numbers with exchange	Add the 1s. Exchange 10 ones for a ten. Then add the 10s.		Add the 1s. Exchange 10 ones for a ten. Then add the 10s.

Year 2 Subtraction			
Subtracting multiples of 10	Use known number bonds and unitising to subtract multiples of 10 . $\theta \Delta \phi \phi \phi \phi \not \Delta \phi$ 8 subtract 6 is 2 . So, 8 tens subtract 6 tens is 2 tens.	Use known number bonds and unitising to subtract multiples of 10 . $10-3=7$ So, 10 tens subtract 3 tens is 7 tens.	Use known number bonds and unitising to subtract multiples of 10 . 7 tens subtract 5 tens is 2 tens. $70-50=20$
Subtracting a single-digit number	Subtract the 1s. This may be done in or out of a place value grid.	Subtract the 1 s . This may be done in or out of a place value grid.	Subtract the 1s. Understand the link between counting back and subtracting the 1 s using known bonds. $\begin{array}{r} \mathrm{T} 0 \\ \hline 3 \mathrm{O} \\ -\quad 3 \\ \hline 3 \quad 6 \\ \hline \end{array} \begin{array}{r} 9-3=6 \end{array}$
Subtracting a single-digit number bridging 10	Bridge 10 by using known bonds. 35-6 I took away 5 counters, then 1 more.	Bridge 10 by using known bonds. 35-6 First, I will subtract 5, then 1.	Bridge 10 by using known bonds. $\begin{aligned} & 24-6=? \\ & 24-4-2=? \end{aligned}$

Year 2 Multiplication			
Equal groups and repeated addition	Recognise equal groups and write as repeated addition and as multiplication. 3 groups of 5 chairs 15 chairs altogether	Recognise equal groups using standard objects such as counters and write as repeated addition and multiplication.	Use a number line and write as repeated addition and as multiplication. $\begin{aligned} & 5+5+5=15 \\ & 3 \times 5=15 \end{aligned}$
Using arrays to represent multiplication and support understanding	Understand the relationship between arrays, multiplication and repeated addition. 4 groups of 5	Understand the relationship between arrays, multiplication and repeated addition. 4 groups of 5 ... 5 groups of 5	Understand the relationship between arrays, multiplication and repeated addition.
Understanding commutativity	Use arrays to visualise commutativity. I can see 6 groups of 3 . I can see 3 groups of 6 .	Form arrays using counters to visualise commutativity. Rotate the array to show that orientation does not change the multiplication. This is 2 groups of 6 and also 6 groups of 2 .	Use arrays to visualise commutativity. $\begin{aligned} & 4+4+4+4+4=20 \\ & 5+5+5+5=20 \end{aligned}$

Maths - calculation policy

			$4 \times 5=20$ and $5 \times 4=20$
Learning $\times 2, \times 5$ and $\times 10$ table facts	Develop an understanding of how to unitise groups of 2,5 and 10 and learn corresponding times-table facts. 3 groups of 10 ... 10, 20, 30 $3 \times 10=30$	Understand how to relate counting in unitised groups and repeated addition with knowing key times-table facts. 0000000000 0000000000 0000000000 $\begin{aligned} & 10+10+10=30 \\ & 3 \times 10=30 \end{aligned}$	Understand how the times-tables increase and contain patterns. $\begin{aligned} & 5 \times 10=50 \\ & 6 \times 10=60 \end{aligned}$

Maths - calculation policy

Year 2 Division			
Sharing equally	Start with a whole and share into equal parts, one at a time. 12 shared equally between 2. They get 6 each. Start to understand how this also relates to grouping. To share equally between 3 people, take a group of 3 and give 1 to each person. Keep going until all the objects have been shared They get 5 each. 15 shared equally between 3. They get 5 each.	Represent the objects shared into equal parts using a bar model. 20 shared into 5 equal parts. There are 4 in each part.	Use a bar model to support understanding of the division. ०००००००००००००००००० 18 $18 \div 2=9$

